Modeling transmembrane transport through cell membrane wounds created by acoustic cavitation.

نویسندگان

  • Vladimir Zarnitsyn
  • Christina A Rostad
  • Mark R Prausnitz
چکیده

Cells exposed to acoustic cavitation and other mechanical stresses can be transiently permeabilized to permit intracellular uptake of molecules, including drugs, proteins, and genes. Microscopic imaging and other studies suggest that intracellular loading occurs through plasma membrane wounds of submicrometer radius that reseal over time through the aggregation and fusion of lipid vesicles trafficked to the wound site. The goal of this study was to 1), determine the size of membrane wounds as a function of time after in vitro sonication of DU145 prostate cancer cells under conditions that caused extensive acoustic cavitation; and 2), theoretically model transport processes leading to intracellular loading. Our overall hypothesis was that intracellular loading is governed by passive diffusion through porous membrane wounds of up to 300-nm radius containing pores that permit entry of molecules up to at least 28-nm radius over a timescale of minutes. Experimental measurements showed intracellular loading of molecules with radii from 0.6 to 28 nm, where most loading occurred after sonication over a timescale up to minutes and where smaller molecules were taken up to a greater extent and over a longer timescale than larger molecules. Theoretical modeling predicted that membrane wounds would have a 300-nm radius initially and then would shrink, with a half life of 20 to 50 s. Uptake was shown to occur predominantly by diffusion and the increasing levels of uptake with decreasing molecular size was explained primarily by differences in molecular diffusivity and, for the largest molecule, geometrical hindrance within the wound. Mathematical modeling was simplified, because transport through porous wounds of possibly complex internal nanostructure was governed largely by transport at the edge of the wound, and depended only weakly on the size, number, and distribution of nanopores within the wound under the conditions relevant to this study. Overall, this study developed a theoretical framework for analysis of transmembrane transport through cell membrane wounds and thereby provided quantitative estimates of their size and lifetime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled permeation of cell membrane by single bubble acoustic cavitation.

Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of so...

متن کامل

Dynamics of sonoporation correlated with acoustic cavitation activities.

Sonoporation has been exploited as a promising nonviral strategy for intracellular delivery of drugs and genes. The technique utilizes ultrasound application, often facilitated by the presence of microbubbles, to generate transient, nonspecific pores on the cell membrane. However, due to the complexity and transient nature of ultrasound-mediated bubble interaction with cells, no direct correlat...

متن کامل

Controlled cavitation-cell interaction: trans-membrane transport and viability studies.

Cavitation bubble dynamics close to a rigid surface gives rise to a rapid and transient fluid flow. A single bubble is created with a laser pulse at different stand-off distances from the rigid surface, where the stand-off distance gamma is defined by gamma = h/R(max), with h being the initial distance and R(max) being the maximum bubble radius. When the surface is covered with adherent cells, ...

متن کامل

Water Management in the Cathode Side of a PEM Fuel Cell

A one dimensional isothermal mathematical modeling of cathode side of a Proton Exchange Membrane (PEM) fuel cell is developed for the water management problem. Water transport is investigated in both cathode Gas Diffusion Layer (GDL) and membrane through solving appropriate equations for fluid flow and mass transport in GDL and water transport within the membrane. The gaseous mixture flowing in...

متن کامل

Cultured Equine Autologous Keratinocytes on Collagen Membrane for Limb Wound Healing

Objective— Use of equine autologous keratinocyte on collagen membrane grafts (KCMG) for treatment of wounds in the distal aspect of the horse limb. Design— Experimental study Animals— Four horses. Procedure—Keratinocytes have been separated by enzyme digestion from lib skin sample and proliferated in vitro. Full thickness excision wounds (6.25 cm2) were created on the mid-lateral of both met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 95 9  شماره 

صفحات  -

تاریخ انتشار 2008